Fast and compact smoothing on large multidimensional grids

نویسندگان

  • Paul H. C. Eilers
  • Iain D. Currie
  • María Durbán
چکیده

A framework of penalized generalized linear models and tensor products of B-splines with roughness penalties allows effective smoothing of data in multidimensional arrays. A straightforward application of the penalized Fisher scoring algorithm quickly runs into storage and computational difficulties. A novel algorithm takes advantage of the special structure of both the data as an array and the model matrix as a tensor product; the algorithm is fast, uses only a moderate amount of memory and works for any number of dimensions. Examples are given of how the method is used to smooth life tables and image data. © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional P-spline Mixed Models: A unified approach to smoothing on large grids

We consider multidimensional penalized spline mixed models. Currie et al. (2006) emphasized the array nature of the method and Eilers et al. (2006) used multidimensional P -splines together with a new fast and compact algorithm. We combine these ideas and show how to represent multidiensional Psplines as mixed models and propose an atractive unified approach to models which include smooth and r...

متن کامل

GPatt: Fast Multidimensional Pattern Extrapolation with Gaussian Processes

Gaussian processes are typically used for smoothing and interpolation on small datasets. We introduce a new Bayesian nonparametric framework – GPatt – enabling automatic pattern extrapolation with Gaussian processes on large multidimensional datasets. GPatt unifies and extends highly expressive kernels and fast exact inference techniques. Without human intervention – no hand crafting of kernel ...

متن کامل

Region Boundaries on a Trianguiar Grid Slagpub

A simple graph model is developed for binary digibl pictures on &triangular grid leading to consistent and intuitive definitions of connectivity and region boundaries as well as fast memory-efficient algorithms for computing boundaries and the "insidedness" tree. Boundary encodings are extremely compact and can be smoothed using a discrete implementation of minimumperimeter polygon methods. Att...

متن کامل

Optimal Multistage Schemes for Euler Equations with Residual Smoothing

A numerical technique, composed of the Van Leer-Tai-Powell optimization and a modified procedure, is applied to design multistage schemes that give optimal damping of high frequencies for given upwind-biased spatial differencing with implicit and explicit residual smoothing. The analysis is done for a scalar convection equation in one space dimension. The object of this technique is to make the...

متن کامل

Fourier Analysis of Multigrid Methods on Hexagonal Grids

This paper applies local Fourier analysis to multigrid methods on hexagonal grids. Using oblique coordinates to express the grids and a dual basis for the Fourier modes, the analysis proceeds essentially the same as for rectangular grids. The framework for oneand two-grid analyses is given and then applied to analyze the performance of multigrid methods for the Poisson problem on a hexagonal gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2006